Abstract
Abstract The article presents two contributions: the first is an optimised control structure for photovoltaic grid connected systems (PVGCSs). The power chain is composed of two cascaded power converters, namely, a boost converter and a five-level T-type multilevel converter. Traditionally, each power converter is controlled by a separate mode control (SMC) from the other, which is computationally intensive since each converter requires its own control system, which is not practical. The suggested control, called integrated finite set model predictive control (IFS-MPC), allows controlling cascaded converters at the same time in one stage, instead of controlling them separately. Consequently, the overall implementation system is widely reduced. The second contribution of the article is a modified IFS-MPC called modified integrated finite set-model predictive control (M-IFS-MPC), which ensures the correct functioning of the grid-tied PV system under certain faults in converter components. Indeed, when one of the DC-link capacitors fails or when one of the auxiliary switches breaks down, by selecting an appropriate choice of the DC-link capacitors’ voltage reference, the proposed design allows a normal operation without intervention on the power circuit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.