Abstract
In this paper, a Lyaupnov based finite control set model predictive direct torque control for the permanent magnet synchronous machine (PMSM) is proposed. In the proposed control scheme, the finite control set prediction and the Lyapunov theory are combined to minimize the torque ripple. The 8 voltage vectors of the 2-level converter are utilized as a finite control set for the torque prediction of the PMSM. A cost function considering the torque error, the Maximum Torque per Ampere (MTPA) operation and the current limitation is introduced. Comparing to the conventional finite control set predictive control, the dominant part of the cost function is utilized as a Lyapunov function to estimate the duty cycle of each voltage vector. An optimum voltage can be obtained by the optimum voltage vector from the 8 vectors and their duty cycles. A small sampling frequency and a fixed switching frequency can be realized when compared to the conventional finite set model predictive control. In the end, the simulation and experimental results validate the performance of the proposed control scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.