Abstract

Previous studies haveshown that Dioscorea bulbifera rhizome (DBR) can induce hepatotoxicity in clinical practice. However, its underlying mechanisms remain largely unexplored. In the present study, we investigated the global effect of DBR exposure on the proteomic and metabolomic profiles in rats over a 12-week administration using an integrated proteomics and metabolomics approach. The abundance of 1366 proteins and 58 metabolites in the liver of rats after subchronic exposure to DBR was dose-dependently altered. The results indicated that DBR mainly damaged hepatic cells through the aberrant regulation of multiple systems mainly including purine metabolism, pyrimidine metabolism, taurine and hypotaurine metabolism, and bile acid metabolism. Notably, the deregulated proteins including Pnp, Dpyd, Upp1, and Tymp and the differential metabolites including uridine, uracil, cytidine, thymine, adenine, adenosine, adenosine 3'-monophosphate, and deoxycytidine were well correlated to purine and pyrimidine metabolism, which might be novel pathways involved in metabolic abnormalities in rats with DBR-induced liver damage. Collectively, these findings not only contributed to understanding the mechanisms underlying the hepatotoxicity of DBR, but also illustrated the power of integrated proteomics and metabolomics approaches to improve the identification of metabolic pathways and biomarkers indicative of herb-induced liver injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.