Abstract
As the demand for electric vehicles (EVs) rises globally, ensuring the safety and reliability of EV battery systems becomes paramount. Accurately predicting the state of health (SoH) and state of charge (SoC) of EV batteries is crucial for maintaining their safe and consistent operation. This paper introduces a novel approach leveraging deep learning methodologies to predict battery SoH, focusing on implementing a system prototype for real-world applications. The proposed system integrates an extended Kalman filter (EKF) with a deep learning framework, forming a system prototype known as FELL, aimed at EV battery diagnosis and prediction. We devise an algorithm utilizing the EKF to estimate the SoH of the battery. We present a detailed overview of the system architecture and implementation, showcasing its predictive capabilities. Experimental results demonstrate the effectiveness of the system in accurately estimating battery SoH with notable improvements in prediction accuracy. Additionally, the FELL system provides users with real-time predictions and comparative analysis across multiple prediction models, offering valuable insights for EV battery management.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have