Abstract

An integrated electrical, fluid flow and thermomechanical analysis is presented to study a product reliability and thermal management solution in an actual or nonuniform chip power distribution of an integrated circuit device in a realistic system application environment. This study aims to improve the existing limitations both on electrothermal analysis where simplified thermal boundary conditions is mostly used and on the current thermal and fluid flow analysis where uniform chip power is widely used to calculate the temperature. In this approach, the localized on-chip power distribution is obtained by using a transistor-level circuit model for simulating the interaction between the macro and functional blocks. A computational fluid dynamics analysis is used to calculate the fluid flow and heat transfer solution with a realistic thermal boundary conditions. To address the ultimate thermal induced mechanical stress and reliability effects on the chip-packaged assembly due to the nonuniform chip power distribution, finite element model is employed for the sequential steady-state heat transfer and mechanical analysis. The results are then discussed and specifically compared with the solutions based on the uniform chip power conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call