Abstract
IEEE 802.16 and Passive Optical Network (PON) are two promising broadband access technologies for high-capacity wireless access networks and wired access networks, respectively. The convergence of 802.16 and PON networks can take the mobility feature of wireless communications and the bandwidth advantage of optical networks jointly. Dynamic bandwidth allocation (DBA) plays an important role in each of these two networks for QoS assurance. In converged 802.16 and PON networks, the integration of the DBA schemes in both networks plays an even more critical role, since bandwidth request/grant mechanisms used in 802.16 and PON are different and the performance of the integrated DBA directly determines the overall system performance. In this paper, we investigate integrated dynamic bandwidth allocation schemes and their signaling overhead. First, this paper starts with discussing the converged network architecture and especially the issues on integrating optical network unit (ONU) and 802.16 base station (BS). Second, it proposes a slotted DBA (S-DBA) scheme and its performance analytic model. The S-DBA scheme takes into account the specific features of the converged network, aiming to reduce signaling overhead caused by cascaded bandwidth requests and grants. The simulation results show that the proposed S-DBA scheme can effectively reduce signaling overhead and increase channel utilization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have