Abstract

This paper is situated in the framework of future hybrid electric aircraft in which embedded weight minimization and maximization of power efficiency are the key challenges to address fuel reduction and environmental constraints. In the first part, the integrated design process aiming the overall power train optimization is described. The second part presents models specifically oriented towards the integrated design. Finally, a sensitivity analysis is carried out at the power train system level to study the influence of both electric components-specific powers and efficiencies on the Maximum Take Off Weight (MTOW) and on the fuel burn of the hybrid propulsion aircraft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.