Abstract

This paper is concerned with the exponential stabilization problem for a class of diffusion processes described by a linear parabolic partial differential equation (PDE) using mobile collocated actuators and sensors. Each collocated actuator/sensor pair is capable of moving within the respective spatial domain divided in advance and a mode indicator function is employed to indicate the different modes for all actuator/sensor pairs according to whether each actuator/sensor pair is static or mobile. By utilizing Lyapunov direct method, an integrated design of switching controllers and mobile actuator/sensor guidance laws for the diffusion process is developed such that the resulting closed-loop system is exponentially stable. Finally, numerical simulations are presented to illustrate the effectiveness of the proposed design method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.