Abstract
The bowtie antenna is a topic of growing interest in recent years. In this paper, we design, fabricate, and characterize a modified gold bowtie antenna integrated on a transparent silica substrate. The bowtie antenna is designed with broad RF bandwidth to cover the X-band in the electromagnetic spectrum. We numerically investigate the antenna characteristics, specifically its resonant frequency and enhancement factor. Our designed bowtie antenna provides a strong broadband electric field enhancement in its feed gap. Taking advantage of the low-k silica substrate, high enhancement factor can be achieved without the unwanted reflection and scattering from the backside silicon handle which is the issue of using an SOI substrate. We simulate the dependence of resonance frequency on bowtie geometry, and verify the simulation results through experimental investigation, by fabricating different sets of bowtie antennas on silica substrates and then measuring their resonance frequencies. In addition, the far-field radiation pattern of the bowtie antenna is measured, and it shows dipole-like characteristics with large beam width. Such a broadband antenna will be useful for a myriad of applications, ranging from photonic electromagnetic wave sensing to wireless communications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.