Abstract
Gastric adenocarcinoma (GAC) is the most common histological type of gastric cancer and imposes a considerable health burden globally. The purpose of this study was to identify significant genes and key pathways participated in the initiation and progression of GAC. Four datasets (GSE13911, GSE19826, GSE54129, and GSE79973) including 171 GAC and 77 normal tissues from Gene Expression Omnibus (GEO) database were collected and analyzed. Through integrated bioinformatics analysis, we obtained 69 commonly differentially expressed genes (DEGs) among the four datasets, including 20 upregulated and 49 downregulated genes. The prime module in protein-protein interaction network of DEGs, including ADAMTS2, COL10A1, COL1A1, COL1A2, COL8A1, BGN, and SPP1, was enriched in protein digestion and absorption, ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway, and amoebiasis. Furthermore, expression and survival analysis found that all seven hub genes were highly expressed in GAC tissues and 6 of them (except for SPP1) were able to predict poor prognosis of GAC. Finally, we verified the 6 high-expressed hub genes in GAC tissues via immunohistochemistry, Western blot, and RNA quantification analysis. Altogether, we identified six significantly upregulated DEGs as poor prognostic markers in GAC based on integrated bioinformatical methods, which could be potential molecular markers and therapeutic targets for GAC patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.