Abstract

High-potential nanomaterials were derived from rice straw using the integrated biobased processes of enzymatic hydrolysis with green organic acid hydrolysis assisted with ultrasonication pretreatment. The optimization condition of nanocellulose preparation by enzymatic hydrolysis via central composite design (CCD) achieved a maximum nanocellulose content of 32.37 ± 0.47% using a cellulase concentration of 107.06 U/mL and 0.13% (w/w) of rice straw cellulose. The ultrasonication-assisted pretreatment prior to enzymatic hydrolysis improved nanocellulose preparation to 52.28 ± 1.55%. Integration with oxalic acid hydrolysis increased the nanocellulose content to 64.99 ± 0.16%. Granular nanocellulose was obtained and consisted of a 105–825 nm nanosize with a zeta potential value of −34.5 mV, and nanocellulose suspension showed high stability without aggregation. In addition, the remaining rice straw cellulose after oxalic acid was microcrystalline nanocellulose. All prepared nanocellulose represented a functional group as original cellulose but had a low crystallinity index (CrI) of 15.68% that could be classified as amorphous nanocellulose. Based on their characteristics, all nanocellose could be further applied in food, cosmetics, and pharmaceuticals. Moreover, the results indicated that the rice straw could be an alternative non-edible cellulose source for preparing potential nanocellulose via a controlled hydrolysis process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call