Abstract

Complexicity in reservoir operation poses serious challenges to water resources planners and managers. These challenges of water reservoir operation are illustrated using a simulation to aid the development of an optimal operation policy for dam and reservoir. To achieve this, a Comprehensive Stochastic Dynamic Programming with Artificial Neural Network (SDP-ANN) model were developed and tested at Sg. Langat Reservoir in Malaysia. The nonlinearity of the natural physical processes was a major problem in determining the simulation of the reservoir parameters (elevation, surface-area, storage). To overcome water shortages resulting from uncertainty, the SDP-ANN model was used to evaluate the input variable and the performance outcome of the Model were compared with the Stochastic Dynamic Programming integrated with auto-regression (SDP-AR) model. The objective function of the models was set to minimize the sum of squared deviation from the desired targeted supply. Comparison result on the performance between SDP-AR model policy with SDP-ANN model found that the SDP-ANN model is a reliable and resilience model with a lesser supply deficit. The study concludes that the SDP-ANN model performs better than the SDP-AR model in deriving an optimal operating policy for the reservoir.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call