Abstract

BackgroundAlthough RNA-binding proteins play an essential role in a variety of different tumours, there are still limited efforts made to systematically analyse the role of RNA-binding proteins (RBPs) in the survival of colorectal cancer (CRC) patients.MethodsAnalysis of CRC transcriptome data collected from the TCGA database was conducted, and RBPs were extracted from CRC. R software was applied to analyse the differentially expressed genes (DEGs) of RBPs. To identify related pathways and perform functional annotation of RBP DEGs, Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out using the database for annotation, visualization and integrated discovery. Protein-protein interactions (PPIs) of these DEGs were analysed based on the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized by Cytoscape software. Based on the Cox regression analysis of the prognostic value of RBPs (from the PPI network) with survival time, the RBPs related to survival were identified, and a prognostic model was constructed. To verify the model, the data stored in the TCGA database were designated as the training set, while the chip data obtained from the GEO database were treated as the test set. Then, both survival analysis and ROC curve verification were conducted. Finally, the risk curves and nomograms of the two groups were generated to predict the survival period.ResultsAmong RBP DEGs, 314 genes were upregulated while 155 were downregulated, of which twelve RBPs (NOP14, MRPS23, MAK16, TDRD6, POP1, TDRD5, TDRD7, PPARGC1A, LIN28B, CELF4, LRRFIP2, MSI2) with prognostic value were obtained.ConclusionsThe twelve identified genes may be promising predictors of CRC and play an essential role in the pathogenesis of CRC. However, further investigation of the underlying mechanism is needed.

Highlights

  • As a significant class of cellular proteins, RNA-binding proteins (RBPs) can interact with RNA by recognizing special RNA-binding domains and are widely involved in multiple posttranscriptional regulatory processes, such as RNA shearing, transport, sequence editing, intracellular localization and translation control [1]

  • Identification of RBPs differentially expressed genes (DEGs) Transcriptome sequencing data of 1493 RBPs of colorectal cancer (CRC) was obtained from the TCGA database

  • Functional enrichment analyses of DEGs The up- and downregulated genes of DEGS were analysed for Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, while both barplot and bubble were plotted

Read more

Summary

Introduction

As a significant class of cellular proteins, RNA-binding proteins (RBPs) can interact with RNA by recognizing special RNA-binding domains and are widely involved in multiple posttranscriptional regulatory processes, such as RNA shearing, transport, sequence editing, intracellular localization and translation control [1]. Some RBPs are known to be associated with colorectal cancer. Muscleblind-like 1 (MBNL1), an RBP implicated in developmental control, can significantly suppress CRC cell metastasis in vitro. MBNL1 destabilizes snail transcripts and inhibits the epithelial-mesenchymal transition (EMT) of CRC cells through the snail/E-cadherin axis in vitro. RNA-binding proteins play an essential role in a variety of different tumours, there are still limited efforts made to systematically analyse the role of RNA-binding proteins (RBPs) in the survival of colorectal cancer (CRC) patients

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call