Abstract
The Keratoconus (KC) is a corneal ectatic disease with unclear etiology. There are increasing studies that reported its association with a variety of inflammatory mechanisms. Vitamin A(VA) is an important nutrient related to inflammation regulation, and its deficiency may cause abnormalities of the ocular surface. However, the proportion of Vitamin A deficiency(VAD) was found surprisingly high among KC patients in our clinic practice. The aim of this study is to explore the effects of VAD on the transcriptome of corneas with the help of the VAD murine model and transcriptomics techniques. Blood samples of KC patients and non-KC controls (NC) were collected and the serum VA concentrations were measured and analyzed. A total of 52 NC and 39 KC were enrolled and the comparison of serum VA showed that the proportion of VAD in KC patients was 48.7% versus 1.9% in NC group. The further analysis of gender differences showed the proportion of VAD in female KC was 88.9% versus 36.7% in KC male patients. To explore the influence of VAD on cornea, the VAD mice fed with VAD diets were used. The RNA sequencing was employed to compare the corneal transcriptomic characteristics between the VAD female mice, NC female mice, VAD male mice and NC male mice. The transcriptome analysis revealed that the upregulated differential genes were mainly enriched in the immune response related pathways in VAD female mice versus NC female mice, especially the genes of JAK-STAT signaling pathway. The downstream molecules of JAK-STAT pathway were also significant after corneal mechanical scratching in female VAD mice. While, the differential genes between VAD male mice and NC male mice were estrogen signaling pathway instead of JAK-STAT pathway. This study indicates that VAD affects the transcriptomics of murine cornea with gender differences, which specifically affects the inflammatory status of the female murine cornea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.