Abstract
Anoectochilus roxburghii (Wall.) Lind. (A. roxburghii) has significant medicinal and economic value, and the social demand for this species is increasing annually. Laser light sources have different luminescent mechanisms compared with ordinary light sources and are also important factors regulating the synthesis of functional metabolites in A. roxburghii. However, the regulatory mechanism through which A. roxburghii responds to blue laser light has not been investigated. Previous studies have shown that blue-laser treatment results in more red leaves than blue- or white-light treatment. Here, the differences in the effects of laser treatment on A. roxburghii was analyzed by transcriptome sequencing. GO analysis revealed that the membranes, calcium ion binding, brassinosteroid-mediated signaling pathway, and response to salicylic acid play important roles in the response of A. roxburghii to blue laser light. KEGG analysis revealed the involvement of multiple pathways in the response to blue-laser treatment, and among these, beta biosynthesis, flavone and flavonol biosynthesis, thiamine metabolism, limonene and pinene biosynthesis, peroxisomes play core roles. Cytoscape interaction analysis of the differentially expressed miRNA targets indicated that novel_miR_66, novel_miR_78, and novel_miR_212 were most likely involved in the effect of blue laser light on A. roxburghii. Metabolic content measurements showed that blue laser light increased the beet red pigment, thiamine, total flavonoid, and limonene contents, and qPCR analysis confirmed that novel_miR_21, novel_miR_66, novel_miR_188, and novel_miR_194 might participate in the blue-laser signaling network through their target genes and thereby regulate the functional metabolite accumulation in A. roxburghii. This study provides a scientific basis for high-yield A. roxburghii production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.