Abstract

ObjectiveTo analyze the abnormally expressed genes involved in cervical cancer occurrence and development.Materials and MethodsIntegrated bioinformatics methods were used to analyze differentially expressed (DE) RNAs, including mRNAs, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs), in stage I, II, III, and IV cervical cancer patients from the TCGA database to fully reveal the dynamic changes caused by cervical cancer.ResultsFirst, DE RNAs in cervical cancer tissues from stage I, II, III, and IV patients and normal cervical tissues were identified and divided into different profiles. Several DE RNA profiles were down-regulated or up-regulated in stage I, III, and IV patients. GO and KEGG analysis of DE mRNA profile 1, 2, 4, 5, 6 and 22 which were significantly down-regulated or up-regulated showed that DE mRNAs are involved in cell division, DNA replication, cell adhesion, the positive and negative regulation of RNA polymerase ll promoter transcription. Besides, DE RNA profiles with significant differences in patient stages were analyzed to perform a competing endogenous RNA (ceRNA) regulatory network of lncRNA, miRNA, and mRNA. The protein-protein interaction (PPI) network of DE mRNAs in the ceRNA regulatory network was also constructed. The network had nine central genes (up-regulated genes: CDKN2A, GSK3B, BIRC5, CYCS, MAD2L1; down-regulated genes: PTEN, FOXO3, CCND2, TGFBR2). Survival analysis found that 5 lncRNAs, 9 mRNAs, and 4 miRNAs can be used as prognostic indicators of cervical cancer. Finally, combined with cluster analysis results, we further screened 2 DE RNAs (AMZ2P1 and HDAC5) using clinical samples, suggesting that AMZ2P1, and HDAC5 may act as diagnostic biomarkers for the development of cervical cancer.ConclusionThis research provides new effective targets and reliable biological markers for the diagnosis and prognosis of cervical cancer.

Highlights

  • Cervical cancer incidence ranks second among female malignant tumors

  • Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed (DE) mRNA profile 1, 2, 4, 5, 6 and 22 which were significantly down-regulated or up-regulated showed that DE mRNAs are involved in cell division, DNA replication, cell adhesion, the positive and negative regulation of RNA polymerase ll promoter transcription

  • Survival analysis found that 5 long non-coding RNAs (lncRNAs), 9 mRNAs, and 4 miRNAs can be used as prognostic indicators of cervical cancer

Read more

Summary

Introduction

Cervical cancer incidence ranks second among female malignant tumors. There are more than 500,000 new cases and over 260,000 deaths yearly (Stumbar et al, 2019). A large number of studies have shown that high-risk human papillomavirus (HRHPV) persistent infection is the major cause of cervical cancer (Roden and Stern, 2018). Cervical cancer screening and prevention methods are improving. For patients with pathogenic HPV virus, comprehensive treatments results such as traditional surgery, radiotherapy and chemotherapy are unsatisfactory, and patients with advanced-stage have a poor prognosis. It is necessary to clarify the molecular mechanism of cervical cancer development and find new key biomarkers for its diagnosis, treatment and prognosis

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call