Abstract

ADP-ribosylation factor (Arf)-GTPase-activating protein (GAP) with coiled-coil, ankyrin repeat and PH domains 1 (ACAP1) has been reported to serve as an adaptor for clathrin coat complex playing a role in endocytic recycling and cellular migration. The potential role of ACAP1 in lung adenocarcinoma (LUAD) has not been yet completely defined. We performed the comprehensive analyses, including gene expression, survival analysis, genetic alteration, function enrichment, and immune characteristics. ACAP1 was remarkably downregulated in tumor tissues, and linked with the clinicopathologic features in LUAD patients. Prognostic analysis demonstrated that low ACAP1 expression was correlated with unsatisfactory overall survival (OS) and disease specific survival (DSS) in LUAD patients. Moreover, ACAP1 could be determined as a prognostic biomarker according to Cox proportional hazard model and nomogram model. We also confirmed that ACAP1 was downregulated in two LUAD cell lines, comparing to normal lung cell. Overexpression of ACAP1 caused a profound attenuation in cell proliferation, migration, invasion, and promoted cell apoptosis. Additionally, functional enrichment analyses confirmedthat ACAP1 was highly correlated with T cell activation and immune response. Then, we further conducted immune landscape analyses, including single cell RNA sequencing, immune cells infiltration, and immune checkpoints. ACAP1 expression was positively associated with the infiltrating level of immune cells in TME and the expression of immune checkpoint molecules. This study first comprehensively analyzed molecular expression, clinical implication, and immune landscape features of ACAP1 in LUAD, suggesting that ACAP1 was predictive of prognosis and could serve as a potential biomarker predicting immunotherapy response for LUAD patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.