Abstract

Background and objectiveThis article uses three different probabilistic convolutional architectures applied to ultrasound image analysis for grading Fatty Liver Content (FLC) in Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) patients. Steatosis is a new silent epidemic and its accurate measurement is an impelling clinical need, not only for hepatologists, but also for experts in metabolic and cardiovascular diseases. This paper aims to provide a robust comparison between different uncertainty quantification strategies to identify advantages and drawbacks in a real clinical setting. MethodsWe used a classical Convolutional Neural Network, a Monte Carlo Dropout, and a Bayesian Convolutional Neural Network with the goal of not only comparing the goodness of the predictions, but also to have access to an evaluation of the uncertainty associated with the outputs. ResultsWe found that even if the prediction based on a single ultrasound view is reliable (relative RMSE [5.93%-12.04%]), networks based on two ultrasound views outperform them (relative RMSE [5.35%-5.87%]). In addition, the results show that the introduction of a “not confident” category contributes to increase the percentage of correctly predicted cases and to decrease the percentage of mispredicted cases, especially for semi-intrusive methods. ConclusionsThe possibility of having access to information about the confidence with which the network produces its outputs is a great advantage, both from the point of view of physicians who want to use neural networks as computer-aided diagnosis, and for developers who want to limit overfitting and obtain information about dataset problems in terms of out-of-distribution detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.