Abstract

Two newly developed, eight-channel, integrated Beam Emission Spectroscopy (BES) detectors have been installed at Huan-Liuqi-2A tokamak, which extends the existing 16 single-channel modular BES system with additional 16 spatial channels. The BES collects the Doppler-shifted Balmer Dα emission with a spatial resolution of 1cm (radial) × 1.5cm (poloidal) and a temporal resolution of 0.5 µs to measure long-wavelength (k⊥ρi < 1) density fluctuations. Compared to the modular BES, the dark noise of the integrated BES is reduced by 50%-60% on average. The signal-to-noise ratio of the integrated BES system is optimized by the high light throughput front-end optics, high quantum efficiency photodiodes, high-gain, low-noise preamplifiers, and sufficient cooling capacity provided by the thermoelectric cooling (TEC) units that maintain the detectors at -20 °C. Crosstalk between channels that share the same optical system is found to be negligible. High-quality density fluctuation data enables 2D (radial-poloidal) imaging of turbulence, which allows for multi-channel spectral analysis, multi-channel cross-correlation analysis and velocimetry analysis. Preliminary results show that BES successfully captures the spatiotemporal features of the local turbulence and obtains statistically consistent turbulence characterization results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call