Abstract
In this paper we study the representation of integrals whose integrand involves the product of a polylogarithm and an inverse or inverse hyperbolic trigonometric function. We further demonstrate many connections between these integrals and Euler sums. We develop recurrence relations and give some examples of these integrals in terms of Riemann zeta values, Dirichlet values and other special functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.