Abstract
By the theory of elliptic curves, we show that there are infinitely many integral right triangle-perpendicular quadrilateral, integral isosceles triangle-perpendicular quadrilateral, and Heron triangle-perpendicular quadrilateral pairs with a common area and a common perimeter. Moreover, for the elliptic curve associated to integral isosceles triangle and integral perpendicular quadrilateral pairs, we present several subfamilies of rank $\geq 4$, and show the existence of infinitely many elliptic curves of rank $\geq 5$, parameterized by the points of an elliptic curve of positive rank.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Functiones et Approximatio Commentarii Mathematici
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.