Abstract

In this paper the kinetic equation for dense simple fluids reported previously is generalized and applied to derive an integral equation for nonequilibrium chemical potential and the Kirkwood diffusion equation for dense polyatomic fluids (e.g., polymers). The derivation requires a generalization of the Kirkwood integral equation for configuration distribution function, the integral equation for local chemical potential to the case of nonequilibrium polyatomic fluids, and a set of evolution equations for macroscopic variables. The evolution equations for macroscopic variables and irreversible thermodynamics are found to have the same mathematical structures as for dense simple fluids Dans cet article, l'equation cinetique des fluides simples denses est generalisee et appliquee a l'etablissement d'une equation integrale pour le potentiel chimique hors equilibre et de l'equation de diffusion de Kirkwood des fluides polyatomiques denses (polymeres, par exemple). La deduction demande la generalisation de l'equation integrale de Kirkwood a des fonctions de distribution de configuration, l'equation integrale du potentiel chimique local au cas des fluides polyatomiques hors equilibre, et un ensemble d'equations d'evolution des variables macroscopiques. Les equations d'evolution des variables macroscopiques et la thermodynamique des processus irreversibles ont les memes structures mathematiques que dans le cas des fluides simples denses

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call