Abstract
AbstractOrganic–inorganic or inorganic metal halide materials have emerged as a promising candidate for a resistive switching material owing to their ability to achieve low operating voltage, high on–off ratio, and multi‐level switching. However, the high switching variation, limited endurance, and poor reproducibility of the device hinder practical use of the memristors. In this study, a universal approach to address the issues using a van der Waals metal contact (vdWC) is reported. By transferring the pre‐deposited metal contact onto the active layers, an intact junction between the metal halide and contact layer is formed without unintended damage to the active layer caused by a conventional physical deposition process of the metal contacts. Compared with the thermally evaporated metal contact (EVC), the vdWC does not degrade the optoelectronic quality of the underlying layer to enable memristors with reduced switching variation, significantly enhanced endurance, and reproducibility relative to those based on the EVC. By adopting various metal halide active layers, versatile utility of the vdWC is demonstrated. Thus, this vdWC approach can be a useful platform technology for the development of high‐performance and reliable memristors for future computing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.