Abstract

microRNAs (miRNAs) are small, non-coding RNAs that regulate expression of multiple genes. MiR-193a-3p functions as a tumor suppressor in many cancer types, but its effect on inducing specific anti-tumor immune responses is unclear. Therefore, we examined the effect of our lipid nanoparticle (LNP) formulated, chemically modified, synthetic miR-193a-3p mimic (INT-1B3) on anti-tumor immunity. INT-1B3 inhibited distant tumor metastasis and significantly prolonged survival. INT-1B3-treated animals were fully protected against challenge with autologous tumor cells even in absence of treatment indicating long-term immunization. Protection against autologous tumor cell challenge was hampered upon T cell depletion and adoptive T cell transfer abrogated tumor growth. Transfection of tumor cells with our miR-193a-3p mimic (1B3) resulted in tumor cell death and apoptosis accompanied by increased expression of DAMPs. Co-culture of 1B3-transfected tumor cells and immature DC led to DC maturation and these mature DC were able to stimulate production of type 1 cytokines by CD4+ and CD8+ T cells. CD4-CD8- T cells also produced type 1 cytokines, even in response to 1B3-transfected tumor cells directly. Live cell imaging demonstrated PBMC-mediated cytotoxicity against 1B3-transfected tumor cells. These data demonstrate for the first time that miR-193a-3p induces long-term immunity against tumor development via modulation of the tumor microenvironment and induction of immunogenic cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.