Abstract
Insulin has a major anabolic function leading to storage of lipidic and glucidic substrates. All its effects result from insulin binding to a specific membrane receptor which is expressed at a high level on the 3 insulin target tissues: liver, adipose tissue and muscles. The insulin receptor exhibits a tyrosine-kinase activity which leads, first, to receptor autophosphorylation and then to tyrosine phosphorylation of substrates proteins, IRS proteins in priority. This leads to the formation of macromolecular complexes close to the receptor. The two main transduction pathways are the phosphatidylinositol 3 kinase pathway activating protein kinase B which is involved in priority in metabolic effects, and the MAP kinase pathway involved in nuclear effects, proliferation and differentiation. However, in most cases, a specific effect of insulin requires the participation of the two pathways in a complex interplay which could explain the pleiotropy and the specificity of the insulin signal. The negative control of the insulin signal can result from hormone degradation or receptor dephosphorylation. However, the major negative control results from phosphorylation of serine/threonine residues on the receptor and/or IRS proteins. This phosphorylation is activated in response to different signals involved in insulin resistance, hyperinsulinism, TNFalpha or increased free fatty acids from adipose tissue, which are transformed inside the cell in acyl-CoA. A deleterious role for molecules issued from the adipose tissue is postulated in the resistance to insulin of the liver and muscles present in type 2 diabetes, obesity and metabolic syndrome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.