Abstract

Insulin resistance (IR) has been widely recognized in humans, and more recently in horses, but its underlying mechanisms are still not well understood. The translocation of glucose transporter 4 (GLUT4) to the cell surface is the limiting step for glucose uptake in insulin-sensitive tissues. Although the downstream signaling pathways regulating GLUT translocation are not well defined, AS160 recently has emerged as a potential key component. In addition, the role of GLUT12, one of the most recently identified insulin-sensitive GLUTs, during IR is unknown. We hypothesized that cell-surface GLUT will be decreased in muscle by an AS160-dependent pathway in horses with IR. Insulin-sensitive (IS) or IR mares (n = 5/group). Muscle biopsies were performed in mares classified as IS or IR based on results of an insulin-modified frequently sampled IV glucose tolerance test. By an exofacial bis-mannose photolabeled method, we specifically quantified active cell-surface GLUT4 and GLUT12 transporters. Total GLUT4 and GLUT12 and AS160 protein expression were measured by Western blots. IR decreased basal cell-surface GLUT4 expression (P= .027), but not GLUT12, by an AS160-independent pathway, without affecting total GLUT4 and GLUT12 content. Cell-surface GLUT4 was not further enhanced by insulin stimulation in either group. IR induced defects in the skeletal muscle glucose transport pathway by decreasing active cell-surface GLUT4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.