Abstract
The risk of several cancers, including colorectal cancer, is increased in patients with obesity and type 2 diabetes, conditions characterized by hyperinsulinemia and insulin resistance. Because hyperinsulinemia itself is an independent risk factor for cancer development, we examined tissue-specific insulin action in intestinal tumor formation. In vitro, insulin increased proliferation of primary cultures of intestinal tumor epithelial cells from ApcMin/+ mice by over 2-fold. Surprisingly, targeted deletion of insulin receptors in intestinal epithelial cells in ApcMin/+ mice did not change intestinal tumor number or size distribution on either a low or high-fat diet. We therefore asked whether cells in the tumor stroma might explain the association between tumor formation and insulin resistance. To this end, we generated ApcMin/+ mice with loss of insulin receptors in vascular endothelial cells. Strikingly, these mice had 42% more intestinal tumors than controls, no change in tumor angiogenesis, but increased expression of vascular cell adhesion molecule-1 (VCAM-1) in primary culture of tumor endothelial cells. Insulin decreased VCAM-1 expression and leukocyte adhesion in quiescent tumor endothelial cells with intact insulin receptors and partly prevented increases in VCAM-1 and leukocyte adhesion after treatment with tumor necrosis factor-α. Knockout of insulin receptors in endothelial cells also increased leukocyte adhesion in mesenteric venules and increased the frequency of neutrophils in tumors. We conclude that although insulin is mitogenic for intestinal tumor cells in vitro, its action on tumor cells in vivo is via signals from the tumor microenvironment. Insulin resistance in tumor endothelial cells produces an activated, proinflammatory state that promotes tumorigenesis. Improvement of endothelial dysfunction may reduce colorectal cancer risk in patients with obesity and type 2 diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.