Abstract

Ligamentum flavum (LF) hypertrophy is the main etiological factor in the development of lumbar spinal stenosis (LSS); however, its molecular pathology remains unclear. Histologically, LF hypertrophy is characterized by a reduction in elastic fibers and an increase in collagen fibers. We previously performed miRNA transcriptomic analysis on excised LF from elderly patients with LSS and identified the insulin receptor signaling along with TGFβ-mediated signaling as pathways involved in ligament hypertrophy. Therefore, this study aimed to investigate the involvement of endogenous insulin as a risk factor for LF hypertrophy in patients with LSS. A total of 1,119 patients aged ≥65 years (average: 76.1±5.9 years) treated for LSS including surgery and conservative treatment were analyzed. The flavum canal ratio (FCR) was calculated in the MRI cross-sectional image, and an FCR of 0.4275 or greater was defined as ligamentous stenosis according to Sakai's criteria. Homeostatic model assessment for insulin resistance (HOMA-IR) was calculated and values ≥2.5 were indicative of insulin resistance in Japanese people. Fifty-one percent of patients with LSS exhibited LF hypertrophy, correlating with higher age, proportion of males and diabetic patients, BMI, HOMA-IR, and creatinine. Among LSS patients, 43.0% had insulin resistance, with 47.1% exhibiting LF hypertrophy and 38.6% without LF hypertrophy, with a significant difference (p<0.01). LSS patients with high insulin resistance also demonstrated significantly higher FCR (p<0.05) and a higher percentage of LF hypertrophy (p<0.01). Conditional logistic regression analysis, adjusting for age, identified HOMA-IR as a significant factor. The study establishes an association between LF hypertrophy and insulin resistance. Considering LF hypertrophy as an inflammation-triggered degeneration of elastic fibers, age-related changes in LF may underlie the basis of inflammatory aging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.