Abstract
Rat 1 fibroblasts have been transfected with the cDNA encoding a kinase-defective mutant human insulin receptor (A/K1018). Expression of this cDNA results in a receptor that is not only biologically inactive but also inhibits normal insulin action through the normal endogenous rat receptors in this fibroblast line (McClain, D. A., Maegawa, H., Lee, J., Dull, T. J., Ullrich, A., and Olefsky, J. M. (1987) J. Biol. Chem. 262, 14663-14671). We have investigated the mechanism of this inhibition and show that: 1) rat receptors are expressed at normal to increased levels in two cell lines which also express A/K1018 receptors at low (A/K1018-A, 5700 total receptors) or high (A/K1018-B, 2.2 x 10(5) total receptors) levels. 2) The rat receptors in the A/K1018 lines can be normally autophosphorylated under the control of insulin in vitro. 3) A/K1018 receptors do not inhibit the kinase activity of normal receptors when mixed together in vitro. 4) In intact A/K1018-B cells, the ability of insulin to stimulate autophosphorylation of the rat receptor is unimpaired; furthermore, the autophosphorylated rat receptor becomes normally activated as a tyrosine kinase. 5) The expression of receptors for insulin-like growth factor I and stimulation of hexose uptake mediated by this receptor are unaffected in cells expressing inhibitory A/K1018 receptors. 6) Expression of the A/K1018 receptor inhibits insulin-stimulated phosphorylation of two endogenous protein substrates (pp220 and pp170) by the native rat receptors. We conclude that the inhibition of insulin action seen in the A/K1018 cells is not mediated at the levels of native receptor expression or activation, nor is the effector (hexose uptake) mechanism affected by the A/K1018 receptors. The expression of this kinase-defective receptor does, however, inhibit the phosphorylation of substrate molecules by the normally activated endogenous rat receptors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.