Abstract

The involvement of GTP-binding proteins (G proteins) in insulin action has been investigated in an in vitro system. Insulin receptors that have been purified by wheat germ lectin chromatography and either tyrosine-agarose chromatography, sucrose density centrifugation, or insulin-Sepharose chromatography have been co-inserted into phospholipid vesicles with different purified G proteins. The results of these studies indicate that a specific insulin-promoted phosphorylation of two G proteins, Go and Gi, can occur in these phospholipid vesicles. Bovine retinal transducin is a poor substitute for Go and Gi, being only weakly phosphorylated by the insulin receptor, and bovine brain Gs is not a substrate. The phosphorylation of Gi and Go occurs primarily on the alpha-subunits. Under optimal conditions, about one alpha o- or alpha i-subunit is phosphorylated on a tyrosine residue for every two beta-subunits of the insulin receptor, suggesting a 1:1 interaction between these G proteins and the heterotetrameric (alpha 2 beta 2) insulin receptor molecular. The inactive (GDP-bound) form of the alpha-subunits appears to be the preferred substrate, with the phosphorylation being significantly reduced in alpha o and alpha i upon the binding of guanosine 5'-O-thiotriphosphate (GTP gamma S) and completely eliminated in the pure alpha-GTP gamma S complex of transducin. The Gi and Go proteins also cause an enhancement of the insulin-stimulated receptor autophosphorylation. This enhancement is a reflection of an increased incorporation of the insulin receptor into lipid vesicles which is induced by these G proteins. Taken together these results provide evidence for the interactions of G proteins with the insulin receptor in a lipid milieu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.