Abstract

These experiments were designed to test the hypothesis that insulin-induced hyperpolarization is a link in the chain of events leading to stimulation of glucose transport. External potassium concentration, [K+]o, was increased by equimolar substitution of KCl for NaCl, a method known to cause cell swelling, and by substitution of [K+]o for [Na+]o with maintenance of constant [K+]o X [Cl-]o product, a method that does not cause cell swelling. When there was constant KCl product, even at 76.8 meq [K+]o insulin continued to hyperpolarize, although by only approximately 44% as much as in normal [K+]o, and insulin-stimulated 2-deoxyglucose uptake was only approximately 60% of that at normal [K+]o. With equimolar substitution of KCl for NaCl: electrical potential difference across cell membranes of surface fibers of rat caudofemoralis muscle decreased with logarithm [K+]o, in the presence or absence of insulin. Insulin-induced hyperpolarization decreased as [K+]o increased and disappeared at 36 mM [K+]o. The amount of insulin bound to its receptors in 1 h was not affected by [K+]o over the range studied. Insulin effects on membrane potential and on 2-deoxyglucose uptake, as both were altered by [K+]o, correlated well. As the probe moved in depth through the first six fibers there was stepwise decrease in depolarization in high [K+]o in the absence of insulin. Insulin hyperpolarized the deepest of these fibers, even when it did not hyperpolarize the outermost. The decrease in insulin-induced hyperpolarization as [K+]o increases is consistent with the hypothesis that insulin hyperpolarizes by decreasing the ratio PNa/PK.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.