Abstract

We studied the effect of the duration of diabetic state on insulin action in skeletal muscle by measuring insulin binding, 2-deoxyglucose uptake, and intracellular glucose metabolism in isolated soleus muscles from streptozotocin-induced diabetic rats. Insulin binding to soleus muscles from diabetic rats was increased over that from controls. Glucose transport activity was determined by measuring the 2-deoxyglucose uptake at the concentration of 1 mmol/L at 25°C. In the rats with diabetes of one week duration, insulin-stimulated 2-deoxyglucose uptake was not impaired, whereas basal 2-deoxyglucose uptake was decreased. However, the diabetic rats with two weeks duration revealed a 35.6% decrease in the insulin-stimulated 2-deoxyglucose uptake. Furthermore, four week duration of diabetic state led to a 60% decrease both in basal and insulin-stimulated 2-deoxyglucose uptake. Total glucose utilization was estimated as the total amount of glucose incorporated into muscle and lactate released into the medium following incubation at 37°C, with 5 mmol/L glucose. The diabetic rats with one week duration did not demonstrate any changes in total glucose utilization both in basal and insulin-stimulated state. However more than two weeks duration of diabetes led to a 30% to 35% decrease both in basal and insulin-stimulated total glucose utilization, similar to the findings in the 2-deoxyglucose uptake study. We concluded that prolonged insulinopenia led to decreased glucose transport and intracellular glucose metabolism and resulted in insulin resistance in skeletal muscles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call