Abstract

In order to satisfy demands for DC de-icing of optical fiber composite overhead ground wire (OPGW) and solve questions such as those relating to circulating current loss and liability of suffering from lightning strike, the grounding method of OPGW must be changed from the current commonly used method of being grounded at every tower to being grounded at one tower. The OPGW would be connected to the tower by an insulator, which is often shunt connected with a protective discharge clearance. The recommended value of the discharge clearance is from 70 to 80 mm. The lightning impulse discharge voltage of such a clearance is generally not more than 100 kV. However, as the transmission line is struck by lightning, over-voltage on the clearance is 885 kV at least, even up to a few MV. The clearance can be broken down reliably. The influence of insulation reconstruction for OPGW on the induced current and the power loss of the AC transmission line was studied by means of theoretical analysis and simulation calculations. Results indicate that change of the OPGW grounding mode could reduce the induced current of the ground wire to below 1 A and reduce the power loss of the line to below 1 W/km. Power loss could be reduced by over 99%. Adoption of a suitable grounding mode for OPGW is of great significance for DC de-icing, lightning protection safety, and energy savings for UHV projects.

Highlights

  • With the technical requirements of lightning protection, communication, energy conservation, and DC de-icing considered, the grounding mode of optical fiber composite overhead ground wire (OPGW) usually is of the type of being grounded at a single point, being grounded at every tower, or being grounded at one tower

  • There is a degree of induction voltage, electrostatic induction current, and electromagnetic induction current on ground wire because of electrostatic coupling and electromagnetic induction between ground wire and the transmission line; in that case, circulating current loss happens in OPGW, which negatively affects the diminishing line loss and energy economy

  • There is a relationship between the power loss of the ground wire and the transmission power of the line

Read more

Summary

Introduction

With the technical requirements of lightning protection, communication, energy conservation, and DC de-icing considered, the grounding mode of optical fiber composite overhead ground wire (OPGW) usually is of the type of being grounded at a single point, being grounded at every tower, or being grounded at one tower. OPGW is generally grounded at every tower, yet common ground wire mainly uses graded insulation and being grounded at a single point. There is a degree of induction voltage, electrostatic induction current, and electromagnetic induction current on ground wire because of electrostatic coupling and electromagnetic induction between ground wire and the transmission line; in that case, circulating current loss happens in OPGW, which negatively affects the diminishing line loss and energy economy. In order to reduce the electromagnetic induction current and power loss caused by the overhead ground wire being grounded at every tower, it is appropriate to adopt the grounding mode of single-point grounding

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.