Abstract

This article presents lifetime estimation using robust control based on thermal path degradation condition of insulated-gate bipolar transistor wind power modules. Online measurements of the on-state voltage [Formula: see text] are considered to be a promising method for obtaining a thermal-sensitive electrical parameter for wire-bond lift-off. This parameter demonstrates a good correlation with junction temperature. Due to the harsh environment, disturbances and uncertain parameters are founded within the compact set of wind energy generation systems. The uncertainty sacrifices some degree of accuracy of junction temperature measurements. Hence, robust control theory has been utilized to synthesize [Formula: see text] controller for the thermal impedance of high-power insulated-gate bipolar transistors. To study this reliability problem, an integrated model of wind energy generation system is built in MATLAB/Simulink for the closed-loop system. Simulation results show the benefit of the designed controller compared to the open-loop system in terms of thermal cycles of junction temperature and lifetime estimation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call