Abstract

Dietary carbohydrate levels can affect gut health, but the roles played by gut microbiota and gut epithelial cells, and their interactions remain unclear. In this experiment, we investigated gut health, gut microbiota, and the gene expression profiles of gut epithelial cells in grass carp consuming diets with different carbohydrate levels. Compared to the moderate-carbohydrate diet, low-carbohydrate diet significantly increased the relative abundance of pathogenic bacteria (Ralstonia and Elizabethkingia) and decreased the abundance of metabolism in cofactors and vitamins, implying a dysregulated gut microbiota and compromised metabolic function. Moreover, low-carbohydrate diet inhibited the expression levels of key genes in autophagy-related pathways in gut epithelial cells, which might directly lead to reduced clearance of defective organelles and pathogenic microorganisms. These aforementioned factors may be responsible for the imperfect organization of the intestinal tract. High-carbohydrate diet also significantly increased the abundance of pathogenic bacteria (Flavobacterium), which directly contributed to a decrease in the abundance of immune system of the microbiota. Furthermore, the active pathways of staphylococcus aureus infection and complement and coagulation cascades, as well as the inhibition of the glutathione metabolism pathway were observed. Above results implied that high-carbohydrate diet might ultimately cause severe gut damage by affecting immune function of microbiota, mentioned immune-related pathways, and the antioxidant capacity. Finally, the correlation network diagram revealed strong correlations of the differentially immune-related gene major histocompatibility complex class I antigen (MR1) with Enhydrobacter and Ruminococcus_gnavus_group in low-carbohydrate diet group, and Arenimonas in high-carbohydrate diet group, respectively, suggesting that MR1 might be a central target for immune responses in gut epithelial cells induced by gut microbiota at different levels of dietary carbohydrate. All these results provided insight in the development of antagonistic probiotics and target genes to improve the utilization of carbohydrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call