Abstract
A film-insert injection compression molding process was introduced to encapsulate cholesteric liquid crystal displays with flexible and rigid lens for full protection of displays to replace the currently used time consuming hand lamination technique. For this purpose, a new interchangeable cavity instrumented hot runner mold was designed and constructed. This complex method was carefully optimized considering challenges arising from an insert multilayer display with +80% liquid crystal content as well as different thermal expansion coefficients between the layers and the lens material as a high potential of delamination and warpage. Concerning the desired physical properties including transparency, low melt viscosity and melting temperature as well as a wide range of hardness grades from soft (flexible) to hard (rigid), three different hardness grades of thermoplastic polyurethanes were found to be the best candidates for this lens application. During proposed lens encapsulation, the pressure changes were evaluated with screw and mold movements using position detection via displacement transducers attached to track the mold closure and screw forward motion. The quality of encapsulation and shrinkage related problems, as well as their elimination, were all discussed. Display substrate material selection criteria for lowered warpage were defined with supporting thermal characterizations. Among the process parameters, tested also by applying the design of experiments with Taguchi method, mold temperature was found to be the most influential parameter on warpage, followed by pin gate opening time, packing pressure, and cooling time.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have