Abstract

1. Chromatography: Principles and applications (J.M.R. Belanger et al). Chromatography: A separation technique. Theory. Physical forces and interactions. Modes of separation. Stationary phases versus mobile phases. Planar chromatography. Column chromatography. Detectors. Preparative liquid chromatography (Prep LC). Special topics. Future trends. Summary. Applications to food analysis. General bibliography. References cited. 2. High performance liquid chromatography (HPLC): Principles and applications (J.M.R. Belanger et al) Theory of liquid chromatography. The mobile phase - The solvent. Instrumentation. Some advantages of HPLC over other techniques. Applications of HPLC to food analysis. Future trends. References. 3. Gas chromatography (GC): Principles and applications (Z. Wang, J.R.J. Pare). Introduction. Principles. Definitions. Theory of gas chromatography. The application of the rate theory. Instrumentation. Instrumentation summary. Applications of GC to food analysis. References. 4. Fourier transform infrared spectroscopy: Principles and applications (A.A. Ismail et al). Introduction. Principles of infrared spectroscopy. Instrumentation. Data handling techniques. Quantitative analysis. Sampling methods. Applications. Conclusions. References. 5. Atomic absorption, emission and fluorescence spectrometry: principles and applications (W.D. Marshall). A brief historical perspective of atomic spectroscopy. Introduction to atomic absorption spectroscopy (AAS). How are atomic absorbances measured? Components of an AA spectrometer. AAS, a relative technique. Interferences. Calibration techniques. Minimising uncertainties. Non-flame atomisation techniques. Atomic emission spectrometry (AES). Flame, furnace or plasma - which to choose? Atomic fluorescence spectrometry (AFS). Trace metal determinations in biological samples. References. 6. Nuclear magnetic resonance spectroscopy (NMR): Principles and applications (C. Deleanu, J.R.J. Pare). Introduction. Notes on literature. The electromagnetic spectrum. The NMR phenomenon. Types of information provided by the NMR spectra. More relaxaton. Instrumental and experimental considerations. Future trends. Applications of NMR to food analysis. References. 7. Mass spectrometry: Principles and applications (J.R.J. Pare, V. Yaylayan). Introduction. The process. Other ionisation techniques. Instrumentation. Linked-scanning techniques. Applications of mass spectrometry in food science - applications of GC/MS. References. 8. Electroanalytical techniques: Principles and applications (J.G. Dick). General Introduction. Direct potentiometry - ion-selective electrodes. Indirect potentiometry - potentiometric titrations. Voltammetric and polarographic methods. Polarisation titrations. Coulometry and conductometry. Electrochemical detectors. References. 9. Capillary electrophoresis: Principles and applications (S. Swedberg).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call