Abstract
In this paper, a hybrid neural network (NN)-genetic algorithm (GA) based non-destructive pavement auscultation method for instantaneous airfield infrastructure condition assessment is discussed. NNs are employed for finite element aided forward prediction of pavement surface deflections resulting from non-destructive test impulse loading and the GAs are used for global optimisation of the pavement structural parameters by matching the NN predicted deflections with the measured pavement response. This hybrid approach takes advantage of the non-linear estimation capability provided by neural networks trained using finite element (FE) solutions in modelling the stress-dependent behaviour of unbound pavement geo-materials while improving the robustness to measurement uncertainty through the application of genetic algorithms. The performance of the developed hybrid pavement auscultation technique is evaluated through extensive field studies conducted at a state-of-the-art full-scale airfield pavement test facility. The results show that this approach is promising for real-time condition evaluation of airfield pavement infrastructure systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.