Abstract
We prove that a large class of smooth solutions ψ to the linear wave equation □gψ=0 on subextremal rotating Kerr spacetimes which are regular and decaying along the event horizon become singular at the Cauchy horizon. More precisely, we show that assuming appropriate upper and lower bounds on the energy along the event horizon, the solution has infinite (non-degenerate) energy on any spacelike hypersurfaces intersecting the Cauchy horizon transversally. Extrapolating from known results in the Reissner–Nordström case, the assumed upper and lower bounds required for our theorem are conjectured to hold for solutions arising from generic smooth and compactly supported initial data on a Cauchy hypersurface. This result is motivated by the strong cosmic censorship conjecture in general relativity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.