Abstract

Cytologically detectable instability of centromeric satellite DNA may cause hereditary disorders in human. To study the mechanisms of such instability, two transgenic mouse lines and 11 clones of transfected F9 mouse embryonic teratocarcinoma cells were obtained with the 3.8-kb repetitive unit (Sat) of Bos taurus satellite DNA IV. Intergeneration and somatic instability of exogenous satellite DNA (satDNA) was observed in transgenic mice and transfected cells as a change in nucleotide sequence of an internal Sat region approximately 1000 bp in size. Since Sat was in the hemizygous state in both cases by the experimental protocol, the instability was attributed to intra-allelic processes. Intergeneration instability probably took place in the premeiotic period of gametogenesis or in early embryo development and led to prenatal death of transgenic embryos after at least one generation. No direct or inverse correlation was observed between methylation and instability of Sat. The results testify that submicroscopic changes in highly repetitive noncoding DNA sequences may already affect the genome function in higher eukaryotes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.