Abstract

The effect of amplifying growth-related receptor signaling, through overexpression of receptors, on growth regulation in animals was examined. Transgenic mice lines were produced by DNA microinjection using the metallothionein promoter ligated to either the growth hormone receptor (GHR) or IGF-1 receptor (IGF-1R) genes (3 GHR founders and 3 IGF-1R founders). Transgenic mouse lines were estimated to contain approximately 4 to 20 copies of transgenes per cell by Southern blot analysis. Founder mice of each transgenic line transmitted transgenes into F1 and F2 pups with Mendelian ratio. Double transgenic (IGF-1R/GHR) mice were produced by the mating between nine pairs of IGF-1R and GHR hemizygous transgenic F1 mice. The transmission patterns in the 78 F2 pups produced from these matings were 20 with no transgene (25.6%), 17 with the IGF-1R gene (21.8%), 25 with the GHR gene (32.1%), and 16 with both GHR and IGF-1R genes (20.5%). The mRNA expression of transgenes using RT-PCR with the specific primers for IGF-IR and GHR genes was checked in tissues of transgenic mice. Double transgenic mice with IGF-IR and GHR genes expressed more mRNAs of transgenes than non-transgenic or single transgenic mice. Growth of double transgenic mice was fastest compared with single transgenic mice containing IGF-1R or GHR genes. And GHR transgenic mice grew faster than IGF-1R transgenic mice. When body weights of 15 transgenic mice for each transgenic line were measured at 4, 10, and 14 weeks after birth, double transgenic mice were significantly heavier compared with non-transgenic control mice at each stage (24 to 30% heavier in double transgenic mice; 15 to 20% heavier in single transgenic mice, P < 0.05). These results suggest that overexpression of growth-related receptor genes could promote the growth of transgenic animals with an additive effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call