Abstract

The firing patterns of up to 4 concurrently active masseter motor units were studied with intramuscular electrodes during a continuous isometric contraction of 15 min duration, in which the subject maintained the mean firing rate of one selected unit at 10 Hz. With this paradigm the net excitation (i.e. mean firing rate) of one unit in the muscle was controlled. This served as the reference for the functional state of other active units during the prolonged contraction. With the mean firing rate of one unit in the muscle fixed, 58% of other active units showed a slow, statistically-significant change in mean firing rate over the 15 min. The initial firing rate of the units did not influence the change in rate. The original firing rate hierarchy, which in short-term contractions reflects the recruitment order, was altered during the prolonged contraction. The explanation for these differential changes in motoneuron net excitation is not clear; they could be intrinsic to the motoneurons or perhaps mediated by reflex pathways. The selective facilitation or suppression of some motor units with continuous activation means that the original size-structured combination of motor units can be modified during a prolonged contraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.