Abstract

Copper oxide appears to be a promising candidate for a hole transport layer (HTL) in emerging perovskite solar cells. Reasons for this are its good optical and electrical properties, cost-effectiveness, and high stability. However, is this really the case? In this study, we demonstrate that copper oxide, synthesized by a spray-coating method, is unstable in contact with formamidinium lead triiodide (FAPI) perovskite, leading to its decomposition. Using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-vis) spectrophotometry, we find that the entire copper oxide diffuses into and reacts with the FAPI film completely. The reaction products are an inactive yellow δ-FAPI phase, copper iodide (CuI), and an additional new phase of copper formate hydroxide (CH2CuO3) that has not been reported previously in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call