Abstract

High-pressure torsion of a laminate consisting of a layer of monocrystalline molybdenum sandwiched between two layers of copper was investigated. Computed tomography showed that at sufficiently large angles of rotation of the anvils the molybdenum layer loses planarity. It develops periodic folds and vortices, leading to ruptures. EBSD analysis revealed the formation of a blocky substructure in the molybdenum layer and a pronounced fragmentation of copper sheets, with the formation of a significant proportion of high-angle grain boundaries. The proposed mathematical model of the process accounts for the observed phenomena qualitatively. It is based on the gradient plasticity theory and predicts the loss of stability of the harder molybdenum layer when the shear strain in the laminate exceeds a critical value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.