Abstract
The importance of the stability characteristics of the planar elliptic restricted three-body problem is that they offer insight about the general dynamical mechanisms causing instability in celestial mechanics. To analyze these concerns, elliptic–elliptic and hyperbolic–elliptic resonance orbits (periodic solutions with lower period) are numerically discovered by use of Newton's differential correction method. We find indications of stability for the elliptic–elliptic resonance orbits because slightly perturbed orbits define a corresponding two-dimensional invariant manifold on the Poincare surface-section. For the resonance orbit of the hyperbolic–elliptic type, we show numerically that its stable and unstable manifolds intersect transversally in phase-space to induce instability. Then, we find indications that there are orbits which jump from one resonance zone to the next before escaping to infinity. This phenomenon is related to the so-called Arnold diffusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.