Abstract
The equations of motion of the planar elliptic restricted three-body problem are transformed to four decoupled Hill’s equations. By using the Floquet theorem, a perturbative solution to the oscillator equations with time-dependent periodic coefficients are presented. We clarify the transformation details that provide the applicability of the method. The form of newly derived equations inherently comprises the stability boundaries around the triangular Lagrangian points. The analytic approach is valid for system parameters 0 < e le 0.05 and 0 < mu le 0.01 where e denotes the eccentricity of the primaries, while mu is the mass parameter. Possible application to known extrasolar planetary systems is also demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.