Abstract

The instability of the bipolar plate for welding fuel cell was analyzed taking the bipolar plate as thin plate. The minimum compressive stress is calculated based on thin plate instability theory caused by longitudinal compressive stress. The simplified thermal stress distribution function is determined using the analytical solution of the plane heat conduction equation. The maximum compressive stress is determined through the analysis of the longitudinal stress distribution of the cross section passing through the solder point during heating and cooling process. The results are used to obtain the pre-tensile stress controlling the instability of the bipolar plate for welding fuel cell, and the minimum pre-tensile stress is the difference between the maximum compressive stress and the minimum compressive stress as the thin plate loses instability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call