Abstract

AbstractQuasicrystal (QC) is a special kind of material with excellent properties such as high hardness, high corrosion resistance, and low surface energy, and becomes promising additions in various nanodevices. In previous lectures, little studies on the dynamic behaviors of nanoscale QC devices were investigated. Based on the nonlocal elasticity theory, nonlinear pull‐in instabilities of QC nano‐switch considering the thermal effect and surface distributed forces are investigated in this paper. The governing equations of the model are derived via the variational principle and the generalized differential quadrature methods. Results reveal that the van der Waals force and the Casimir force reduce the pull‐in voltage and pull‐in phonon and phason displacements of QCs. Moreover, the pull‐in voltage increases with the reduction in phonon‐phason coupling elastic coefficients and the increment in phason elastic coefficients of QCs, indicating the considerable field‐dependence of nanostructures. Besides, the thermal correction of Casimir force and the surface residual tension have different effects on the displacements, and the micro‐mechanism of surface and small‐scale effects is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call