Abstract
The 'thermal blooming' nonlinearity associated with lasers' atmospheric propagation causes several other propagation instabilities which limit the maximum power transmissible by the atmosphere; these are stimulated thermal Rayleigh scattering, the closed-loop instability, the phase-compensation instability, and, in the case of a repetitively-pulsed laser, the stimulated thermal Brillouin scattering instability. These instabilities, which are excited by optical turbulence along the atmospheric path and by noise of the laser beam, grow through the creation of three-dimensional filament or ribbon structures in the atmosphere which are correlated to disturbances of the laser beam. Phase and intensity compensation can be implemented in principle, via special arrangements of such phase-only correctors as deformable mirrors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have