Abstract

AbstractThe Hamiltonian of optical fields in a nonlinear dispersive fiber is studied. Quantum field fluctuations are spontaneously created close to an optical event horizon through the analog Hawking effect. The simplest model is considered for an optical black‐hole laser, where the Hawking radiation is produced and amplified inside a cavity formed by two horizons: a black hole and a white hole. It is found that resonant Hawking radiation originates from a discrete set of instabilities and tunnels out of the horizons. Finally, the numerical results are compared with the resonance and instability conditions and a phenomenological model is developed to give a clear physical picture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.